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Abstract

Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the post-genomics
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ra. This methodology has been applied in many fields. Current metabonomics practice has relied on mass spectrometry
hromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS) and nuclear magnetic reson
o analyze metabolites. In this study, a novel approach of using high-performance liquid chromatography (HPLC) in conjunction w
ped software was employed. Using the principal components analysis method (PCA), all (113) peaks of urinary metabolites withcis-diol
tructure from patients with hepatitis and hepatocirrhosis were compared to those from liver cancer patients. The results show
etabonomics-PCA method might be useful to differentiate between patients with hepatocirrhosis and hepatitis from patients

ancer while lowering false-positive rate. These findings also suggest that a subset of the urinary nucleosides identified with me
orrelate better with cancer diagnosis than the traditional single tumor marker alpha-fetoprotein (AFP).
2004 Elsevier B.V. All rights reserved.
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. Introduction

Metabonomics is the method of studying, profiling and
ngerprinting metabolites in various physiologic states[1].
his method has recently demonstrated enormous potentials

n many fields such as plant genotype discrimination[2,3],
oxicological mechanisms, disease processes and drug dis-
overy [4–10]. One such recent application of this method
ncluded the rapid and non-invasive diagnosis of coronary
eart disease[11–14]. In these methods, metabolite profil-

ng is mainly used for the analysis of a class of metabolites.
etabonomics aims to include all classes of compounds and
tilizes metabolic fingerprinting to maintain a rapid classi-
cation of samples according to their origin and biological
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relevance. In order to optimize and utilize metabonom
a stable metabolite fingerprint must be achievable. W
in traditional metabolites target analysis, only several
defined metabolites were selected to analyze[1]. In previous
attempts, metabonomics data were generated by nuclea
netic resonance (NMR), gas chromatography–mass
trometry (GC–MS) and liquid chromatography–mass s
trometry (LC–MS)[15–17]. While these methods were ad
quate, work by Tuan et al. illustrated that high-performa
liquid chromatography (HPLC) could be used in meta
nomics. This method offered the advantage of contro
critical elements of experimental design while allowing
optimization of data acquisition and analysis[18].

One important area where the analysis of metabo
appears crucial is the study of nucleosides. Nucleo
are an important class of metabolites and have the p
tial roles of serving as tumor markers[19–22]. The study
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of nucleosides, however, has been hindered by the false-
positive results of some benign diseases, especially inflam-
matory diseases. There are at least 93 modified nucleoside
metabolites[23] that occur mainly from tRNA. This compli-
cates the analysis of nucleosides as metabolite markers for
cancer. These concerns become significant when designing
rapid detection methods for discerning between liver can-
cer and an inflammatory disease such as acute or chronic
hepatitis.

In this study, we developed an HPLC-based metabonomics
method to distinguish between patients with hepatocirrhosis
and hepatitis from those with liver cancer based on all peaks
of urinary metabolites withcis-diol structure, including nu-
cleosides. Using the self-developing software, all the peaks
in the chromatograms of these urinary metabolites with acis-
diol structure from patients were matched to those of a pre-
defined reference chromatogram. From the following pattern
recognition results, lower false-positive result (7.40%) was
obtained and potential markers were found.

2. Experimental

2.1. Collection of urine samples and extraction of
nucleosides
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For the analysis of urinarycis-diol metabolites, the sam-
ples were thawed at room temperature. The spontaneous urine
added with internal standard 8-bromoguanosine (Br8G) was
extracted on a phenylboronic acid column as described else-
where[23–25]. After the extraction, the class ofcis-diol was
the major composition of the samples for the phenylboronic
acid column’s specific affinity forcis-hydroxyl group. The
eluent from the phenyl boronate column was evaporated
to dryness in a vacuum system at 39–40◦C and dissolved
in potassium dihydrogen phosphate (KH2PO4) buffer. And
then a RP–HPLC process was employed to analyze the
samples[21–25]. The HPLC system consisted of two Shi-
madzu HPLC-10ATVP pumps (Kyoto, Japan), an autoin-
jector model SIL 10ADVP, an SPD-10AVP UV–vis de-
tector, set at 254 nm and a SCL 10AVP interface, a Hy-
persil ODS 5�m C18 HPLC column (250 mm× 4.6 mm)
(Elite, Dalian, China). And the creatinine concentrations of
these samples were determined by capillary electrophore-
sis[21–25]. And a typical sample chromatogram is given in
Fig. 1.

2.2. Data acquisition and processing

A data set of urinary nucleosides containing all the pa-
tients and healthy volunteers was obtained for the metabolite
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Spontaneous urine samples were collected from
ealthy adults, 77 patients with liver infectious disea
27 hepatocirrhosis patients, 30 acute hepatitis patien
hronic hepatitis patients) and 48 liver cancer patients. T
ges were 50.6± 16.2 (the age range was 20–85). All patie
ere from the First and Second Affiliated Hospitals of Da
edical University of China. All the diagnoses of these

ients were confirmed by histopathology. Urine samples
ollected and kept at−20◦C until analysis. And there we
o diet or other restrictions in the sample collection.

Fig. 1. A typical sample chromatogram,
arget analysis. Each pattern was described by 15 feature
bles, which were the creatinine concentrations of 15 ur
ucleosides.

The other data set was collected for the metabolite p
ng and metabonomics. All of the HPLC peaks informa
as recorded. The process of this data set analysis b
ith the selection of a reference chromatogram (Fig. 1) that

s typical of the whole set ofcis-diol compound analyses a
as the most peaks in all sample chromatograms. The s
tep of the data processing is to find all peaks in the refe
hromatogram by using a peak detecting program. This

was then selected as reference chromatogram.
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uses a script for identifying peaks that both exceed a signal-to-
noise ratio (S/N) of 1000 and that have peak widths of at least
12 s. All other chromatograms were then matched against
this list of cis-diol targets. Six reference peaks were firstly
identified and used to match the individual peaks between
the reference chromatogram and other chromatograms. This
was done to avoid retention time fluctuation between HPLC
samples. The chromatogram was then separated into seven
zones, each zone bordering a reference peak. On the basis
of these reference peaks, the peak matching was carried out
based on retention factor (e.g. retention time, capacity factor
k′, or lgk′) comparison between a sample chromatogram and
the reference chromatogram.

After peak matching, the area of each peak was normal-
ized to the internal standard 8-bromoguanosine and corrected
by the concentration of creatinine because the ratios of nu-
cleosides to creatinine in random samples were the same as
those in 24-h samples[19–22], and the results from the ran-
dom are as valid as those from urine collected over a 24-h
period when nucleoside levels are expressed relative to cre-
atinine[25,27–30]. A number of peaks that were detected in
the reference chromatogram were apparently absent in the
sample chromatograms. This primarily occurred because the
comparison peaks had a S/N lower than 1000. Therefore, the
true peak areas for these peaks were somewhere between zero
a −6
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of the sample most clearly along the coordinate axes. The
principal components (PCs) are displayed as a set of ‘scores’
(t), which highlight clustering or outliers, and a set of ‘load-
ings’ (p), which highlight the influence of input variables on
t [26]. The PCA algorithm used for the above analysis was
modified from the Statistics Toolbox of Matlab.

3. Results and discussion

3.1. Metabolites target analysis

Metabolite target analysis pays great attention to sev-
eral known bio-markers. In order to analyze the data an
internal standard (Br8G) was used to quantify the concen-
trations of 15 urinary nucleosides: pseudouridine (Pseu),
cytidine (C), uridine (U), 1-methyladenosine (m1A), ino-
sine (I), 5-methyluridine (m5U), guanosine (G), xanthosine
(X), 1-methylinosine (m1I), 1-methylguanosine (m1G), N4-
acetylcytidine (ac4c), 2-methylguanosine (m2G), adenosine
(A), 2,2-dimethylguanosine (m22G) and 6-methyladenosine
(m6A). Their concentrations were further calibrated by their
respective creatinine concentrations[20–22,24,25,27]. Fif-
teen nucleosides were selected based on their bio-importance
as tumor markers and whether their standard could be avail-
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uch peaks.

It should also be noted that use of a reference c
atogram has the advantage of producing examples al

he same number of attributes. The data for analysis is t
ore a simple 2D matrix, enabling the data analyst to ch
rom many statistical and machine learning data ana
ethods.

.3. Peak matching algorithm

The peak matching was carried out based on the adj
etention factor (arf) that was calculated according to the
owing formula:

arfi = rfi − RFj

RFj+1 − RFj

(ARFj+1 − ARFj) + ARFj,

Tj < ti ≤ Tj+1 (1)

here arfi (i = 1, . . ., 113) is the adjusted retention factor
he peaki; rf i is the retention factor;ti is the retention time o
he peak;j (j = 0, . . .,C) is the number of reference peaks
his study,C is equal to six. ARFj , RFj andTj are the referenc
eak’s adjusted retention factor, retention factor and rete

ime, respectively. ARF0, RF0 andT0 were all equal to zero

.4. Pattern recognition method

Principal components analysis (PCA) is a mathema
ay of determining the linear transformation of a sampl
oints inN-dimensional space, which exhibits the proper
ble. Significant differences were found in the mean
entrations of all 15 nucleosides (C,P< 0.05; other nucleo
ides,P< 0.01) between cancer and control patterns (he
eople). Metabolite target analysis was carried out by u
rincipal components analysis method[20] on the HPLC–UV
ata of 15 urinary nucleosides. The positive ratio of ca

rom these samples was 83.0% (Table 1). The level of the
raditional biomarker, such as AFP, was also measured
ositive ratio of cancer for AFP was 73%, suggesting tha
etabolites target analysis of the 15 urine nucleosides

uperior to that of a traditionally accepted tumor marker
Clinical diagnosis of cancer requires a low false-pos

esult when distinguishing it from other diseases. To in
igate the false-positive rate, the urinary nucleoside con
rations in patients with acute hepatitis, chronic hepatitis
epatocirrhosis were measured. An increase in the mea
entrations of seven nucleosides (Pseu, C, U, X, m1G,
nd m2G) (Fig. 2a) could be observed with patients with m
evere liver diseases. The lowest mean concentrations c
rom patients with acute hepatitis, and increasing in pat
ith chronic hepatitis, and highest in patients with hep
irrhosis. While promising, we wanted to further underst

able 1
iagnostic positive ratio of liver cancer patients based on tradit
iomarkers and PCA based on 15 urinary nucleosides

CA based on 15
rinary nucleosides

AFP (ng/mL) CEA CA199 CA12

>20 >200

9/47 34/46 27/46 2/33 10/26 13/2
3.0% 73.9% 58.7% 6.1% 38.5% 52.0
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Fig. 2. (a) Mean concentrations of the 15 urinary nucleosides from liver
disease patients. (b) PCA scores plot of hepatocirrhosis patients and cancer
patients based on 15 nucleosides. (
) Hepatocirrhosis patients; () cancer
patients.

this trend in individual patients. Therefore, metabolite analy-
sis of 15 nucleosides was analyzed with the PCA method. As
all the constructed principal components are orthogonal, the
object scores may be plotted against one another to represen
the distribution of the objects in a space.Fig. 2b illustrates
that the liver cancer patients and hepatocirrhosis patients were
not distinguishable and suggests that the information of 15
nucleosides is not sufficient to distinguish liver cancer from
other liver diseases.

3.2. Metabonomics of cis-diol metabolites

To avoid false-positive results, we developed a novel
metabonomics method to maximize the information used
from the original chromatograms. Unlike the NMR method,

the retention factor of the HPLC method is not stable enough
to provide the data set for a metabonomics investigation.
While HPLC chromatograms are potentially information-
rich entities and need to be refined to extract useful infor-
mation from the raw data. Our data acquisition and pre-
processing procedures were designed to extract the maximum
reliable information from the chromatograms. The aim was to
identify as many metabolites as possible and not just a pre-
defined nucleoside set based on background knowledge of
their biological importance as has been conventionally used
in studies of metabolites. A peak matching software was,
therefore, developed to recognize and match all the peaks
appearing in a chromatogram.

Based on the peak detecting software, 113 peaks were
found in the typical reference chromatogram (Fig. 1). For
125 patient samples and 50 healthy volunteer samples, this
resulted in a processed data set of 113× 125 (from patients)
and 113× 50 (from healthy volunteers) using real numbers
after peak matching. No pre-processing or data reduction was
carried out on these samples.

Based on the data from all peaks of metabolites withcis-
diol structure, the corresponding PCA score plots (Fig. 3a)
showed that patients with hepatitis and patients with hepato-
cirrhosis clustered in one region, while liver cancer patients
were located in a different cluster region. While the cluster
r some
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egions primarily adhere to these subsets of patients,
ancer patients appeared in the hepatocirrhosis and h
is area, while a few hepatocirrhosis patients appeared
ancer pattern area. This may be related to cancer pa
xpressing some of the same symptoms as those with
ocirrhosis and hepatitis, while the hepatocirrhosis and
titis have fewer of the symptoms expressed in cancer w
igh RNA turnover. As liver disease occurs as a range of
entations, hepatocirrhosis patients deteriorating alon
pectrum to liver cancer could explain the slight overla
hese cluster regions.

The concentration of AFP considered to be indicativ
iver cancer is generally accepted to be 20 ng/mL, wh
igher value may be in the range of 200 ng/mL. Based o
FP criteria (>20 ng/mL), 50% (13/26) of hepatocirrho
nd 52.2% (12/23) of chronic hepatitis would be class
s liver cancer. If the higher concentration of AFP is u
>200 ng/mL), 11.5% (3/26) of hepatocirrhosis and 17
4/23) of chronic hepatitis would be classified as liver c
er.Fig. 3a illustrates that only 7.40% of the hepatocirrho
atients and none of the hepatitis patients are classifi
ancer. These findings illustrate that the metabonomics-
ethod may be useful to differentiate between patients
epatocirrhosis and hepatitis from patients with liver ca
hile lowering false-positive rates. These findings also
est that a subset of the urinary nucleosides identified
etabonomics correlate better with cancer diagnosis tha

raditional single marker AFP.
In order to further distinguish between patients with he

ocirrhosis and those with liver cancer, another trial was d
he hepatitis and liver cancer patterns were analyzed b
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Fig. 3. (a) PCA scores plot of the metabonomics data (lgk′ was used as the
retention factor in peak matching method). (b) Prediction of the positions of
the hepatocirrhosis patients via regression analysis. () Liver cancer; (
)
hepatitis; (�) hepatocirrhosis.

metabonomics-PCA method mentioned above, and the hep-
atocirrhosis patterns were then fed to a principal components
regression. Here, they were projected to the space produced
by the first two principal components of the hepatitis and
liver cancer patterns. The process was similar to the position
prediction of the hepatocirrhosis patients.Fig. 3b reveals that
88.9% (24/27) of the hepatocirrhosis patterns appeared in the
area of the hepatitis patterns using this regression model.

3.3. Reference peaks selection

As mentioned above, we have demonstrated that our
HPLC-based metabonomics method is helpful in clinical
diagnosis of various liver diseases. To get optimized peak
matching performance, reference peaks should be care-

Fig. 4. Box plot of the metabolites. The box has lines at the lower quartile,
median and upper quartile values. The whiskers are lines extending from
each end of the box to show the extent of the rest of the data. Outliers (+) are
data with values beyond the ends of the whiskers. If there is no data outside
the whisker, a dot is placed at the bottom whisker.

fully considered. The selected reference peaks in the peak
matching method should satisfy the following requirements:
(1) easily recognized in the reference and sample chro-
matograms, a peak with a significant height should be firstly
considered; (2) a stable retention time; (3) smaller distur-
bance from neighbor peaks.

The box plots (Fig. 4) for all thecis-diol metabolites give a
quick impression of the original data. There was substantially
more variability in peaks: 15#, 32#, 48#, 59# and 74# when
compared to other peaks. These peaks were also higher than
the others. Because of the unstable retention time, peak 59#
was omitted and peak 53# was selected as one of reference
peaks for its stable retention time. The internal standard Br8G
fulfilled the first three requirements and was then added to the
reference peaks set. In this study, the reference peaks included
15#, 32#, 48#, 53#, 74# and 80# (Br8G). The pre-defined arf
values were then assigned to these reference peaks based on
the distribution density of the peaks in the chromatograms.
The region crowded with more target peaks was assigned to
a larger arf scale. After calibration of the adjacent reference
peaks, the adjusted retention factors of all peaks became sta-
ble. This allowed for the peaks to be correctly identified.

3.4. Elucidation of the contribution of the PCs
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Pioneering studies of Borek and co-workers[28–30]sug-
est that excretion of elevated amounts of modified nu
sides in tumor bearing animals results from increme

RNA turnover rather than cell death or the destructio
he tissue. Although the molecular mechanisms of this
retion are unclear, efforts have been made to use mo
ucleosides as biochemical markers for neoplastic dis

19–37]. Several modified nucleosides occurring at com
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Table 2
First 10 peaks appearing in the first and second principal components

PC1 PC2

Peak no.a Constituent Weight Peak no.a Constituent Weight

32 m1A 0.206 36 Unknown 0.241
48 Unknown 0.203 39 Unknown −0.232
23 Unknown 0.200 28 Unknown 0.220
15 Pseu 0.188 33 Unknown 0.204
14 Unknown 0.184 25 Unknown −0.200
13 Unknown 0.175 81 Unknown −0.199
44 Unknown 0.170 17 Unknown 0.188
59 m1I 0.165 27 Unknown 0.183
40 Unknown 0.164 67 Unknown −0.174
38 Unknown 0.158 77 Unknown −0.164

a Peak no. is the same as inFig. 1.

atively high levels such as Pseu, dihydrouridine (Dhu), m1I,
m2G, m1G have frequently been used to examine the differ-
ences between urinary nucleoside levels of cancer patients
and normal subjects.

The contributions of the predominant peaks in the first and
the second PC and the corresponding constituents are given in
Table 2. It is clear that they are very different from those given
in Fig. 2a and other nucleoside markers traditionally used
[19–37]. Here, many unknown components are presented,
especially in the second PC. These may represent previously
overlooked regions of data that may be of great significance
for the metabonomics analysis. Perhaps these peaks affect
the diagnosis in a combination model and not in a single
component mode. The result inTable 2suggests that further
work using HPLC–MS is necessary to identify the unknown
components. These peaks may be potential components of
novel markers that could aid the correct and reliable diagnosis
of the liver cancer.

4. Conclusions

We conclude that the HPLC-based metabonomics is able
to distinguish between cancer patients and healthy volun-
teers, and is further able to distinguish between patients with
h liver
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science and technology. And the authors would like to ex-
press the thanks to Prof. Shengli Yang of Research Center
of Biotechnology, the Chinese Academy of Sciences, Dr.
Zhengping Zhuang of NIH and Tim Vogel of Columbia Uni-
versity for their helpful revision of the manuscript.
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